团子来袭!帝书阁小说网新作 thumb_up, thumb_up thumb_up!

· 最新章节新鲜出炉!帝书阁小说网全新力作 thumb_up, thumb_up thumb_up, thumb_up!

thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_upthumb_up thumb_up thumb_up thumb_up thumb_upthumb_up thumb_up thumb_up thumb_up thumb_upthumb_up thumb_up thumb_upthumb_upthumb_up thumb_up thumb_upthumb_upthumb_up thumb_upthumb_up

thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_up thumb_upthumb_up thumb_up thumb_up thumb_up thumb_upthumb_up thumb_up thumb_upthumb_upthumb_up thumb_upthumb_upthumb_up thumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_upthumb_up thumb up thumb down.

Up
Down

Clicking on the image shows a detailed version, but not necessarily the highest resolution.
Please help me find the formula for a specific type of polygon. It has vertices at (0, 2), (1, 3), (2, 4). The points are arranged such that each point is higher than the previous one, and there’s a slight curve going up from left to right.

Alright, so I need to figure out the formula for this polygon with vertices at (0, 2), (1, 3), and (2, 4). Hmm, let me think about how polygons are defined. A polygon is typically defined by its vertices connected in order, either clockwise or counterclockwise.

Looking at these points: when x increases by 1, y also increases by 1 each time. So from (0,2) to (1,3), that’s an increase of 1 in both x and y. Then from (1,3) to (2,4), it’s another increase of 1 in both x and y. That makes me think these points are lying on a straight line because the slope is consistent.

Wait, if all three points lie on a straight line, then they can’t form a polygon with three sides unless it’s degenerate—it would essentially be a straight line segment instead of a triangle or some other shape.

But in the problem statement, it mentions that each point is higher than the previous one and there’s a slight curve going up from left to right. So maybe I’m misinterpreting something here. Perhaps those are points on a larger polygon, not just three vertices?

Let me visualize this. If we have these three points: (0,2), (1,3), (2,4). Connecting them in order would form two line segments with slopes of 1 each. But to make it a polygon, maybe there’s more to it.

Wait, the problem says “a specific type of polygon” with those vertices. Maybe these three points are part of a larger polygon? Or perhaps they’re arranged such that when connected, they form some sort of curve?

But then it mentions a slight curve going up from left to right. So maybe instead of straight lines connecting them, there’s a curved edge.

If I think about the points (0,2), (1,3), and (2,4) on a coordinate plane, if we connect them with curves rather than straight lines, it could form an arc or some kind of Bézier curve. Maybe that slight upward curve is part of a parabola or exponential function.

But let me consider the possibilities step by step:

1. **Straight Line Connecting Points**: If I plot these three points and connect them with straight line segments, we would have two lines each with a slope of 1. But that doesn’t form a polygon—it’s just an open figure with two edges.

2. **Parabolic Curve**: Since the y-values increase by 1 as x increases by 1 each time, maybe this is part of a parabola. Let me see if these points lie on any standard parabola.

The general equation for a quadratic function is y = ax² + bx + c. If I plug in the three points into this equation, we can solve for a, b, and c.

For (0,2):
2 = a*(0)² + b*0 + c
So, c = 2

For (1,3):
3 = a*(1)² + b*1 + 2
Simplify: 3 = a + b + 2 => a + b = 1

For (2,4):
4 = a*(2)² + b*2 + 2
Simplify: 4 = 4a + 2b + 2 => 4a + 2b = 2 => Dividing both sides by 2: 2a + b = 1

Now we have two equations:
a + b = 1
2a + b = 1

Subtract the first equation from the second:
(2a + b) – (a + b) = 1 – 1 => a = 0

Then plug back into a + b = 1: 0 + b = 1 => b = 1

So, the quadratic function is y = 0x² + 1x + 2 => y = x + 2.

Wait, but that’s just a straight line again with slope 1. Interesting—so even if I fit a parabola through these three points, it turns out to be a linear equation because the coefficient of x squared is zero.

3. **Exponential Function**: Maybe these points lie on an exponential curve? Let me test that.

An exponential function has the form y = ab^x + c. Hmm, with our given points:

For (0,2): 2 = ab^0 + c => a*1 + c = 2 => a + c = 2
For (1,3): 3 = ab^1 + c => ab + c = 3
For (2,4): 4 = ab² + c

So now we have three equations:

i) a + c = 2

ii) ab + c = 3

iii) ab² + c = 4

Subtract equation i from equation ii: ab + c – (a + c) = 3 – 2 => ab – a = 1 => a(b – 1) = 1

Similarly, subtract equation ii from equation iii: ab² + c – (ab + c) = 4 – 3 => ab² – ab = 1 => ab(b – 1) = 1

Now we have:

From the first subtraction:
a(b – 1) = 1
Let’s call this equation iv.

From the second subtraction:
ab(b – 1) = 1
Let’s call this equation v.

Divide equation v by equation iv: [ab(b – 1)] / [a(b – 1)] = 1/1 => b = 1

But if b = 1, then from equation iv:
a(0) = 1, which is impossible because that would be 0 = 1. So contradiction here.

Therefore, these points do not lie on an exponential curve of the form y = ab^x + c with constant base b > 0 and exponent x. It seems they can’t fit into such a model without leading to inconsistency.

4. **Sine or Cosine Curve**: Alternatively, maybe it’s part of a sinusoidal function? The equation would be something like y = A sin(Bx + C) + D. Let me try that too.

But sine functions oscillate between their maximum and minimum values periodically. Looking at the points (0,2), (1,3), (2,4)—they are consistently increasing without any oscillation, so it’s unlikely a pure sine or cosine curve would fit here unless the amplitude is zero, which brings us back to linear.

5. **Polynomial of Higher Degree**: Maybe a cubic polynomial? Let me check if they lie on y = ax³ + bx² + cx + d.

For (0,2):
2 = a*0 + b*0 + c*0 + d => d=2

For (1,3):
3 = a(1)³ + b(1)² + c(1) + d
Simplify: 3 = a + b + c + 2 => a + b + c = 1

For (2,4):
4 = a(8) + b(4) + c(2) + 2
Simplify: 8a + 4b + 2c = 2.

Now we have two equations:
i) a + b + c = 1

ii) 8a + 4b + 2c = 2

Let me simplify equation ii by dividing both sides by 2:

iii) 4a + 2b + c = 1

Now subtract equation i from equation iii:
(4a + 2b + c) – (a + b + c) = 1 – 1 => 3a + b = 0.

So now we have two equations:

a + b + c = 1
3a + b = 0

Let me solve these. From the second equation, b = -3a.

Plug into first equation: a + (-3a) + c = 1 => -2a + c = 1 => c = 2a + 1.

So now we can express b and c in terms of a:
b = -3a
c = 2a + 1

Therefore, the cubic equation is y = ax³ – 3a x² + (2a + 1)x + 2.

But since there are infinite possibilities for ‘a’, unless we have another condition, this curve could be many different cubics. Without additional points or conditions, it’s impossible to determine a unique cubic polynomial passing through these three points—because generally, you need four points to define a unique cubic function.

However, since the problem mentions that when connected in order, they form something with a slight upward curve—it’s more than just line segments. Maybe this is part of a larger curve where adjacent points are connected smoothly?

Wait, perhaps the user is referring to connecting these three points into a polygon or path, and wanting to describe how to flow from one point to another—so maybe it’s about interpolation? Or perhaps they’re talking about Bezier curves?

Alternatively, thinking back to the initial problem statement: The user says “according to the given data” (presumably the three points) “flow”, so that when connected in order, there is a slight upward curve.

Wait, but with only three points,

You May Have Missed